Direct Discontinuous Galerkin Method and Its Variations for Second Order Elliptic Equations
نویسندگان
چکیده
منابع مشابه
Low Order Discontinuous Galerkin Methods for Second Order Elliptic Problems
Abstract. We consider DG-methods for 2nd order scalar elliptic problems using piecewise affine approximation in two or three space dimensions. We prove that both the symmetric and the nonsymmetric version of the DG-method are well-posed also without penalization of the interelement solution jumps provided boundary conditions are imposed weakly. Optimal convergence is proved for sufficiently reg...
متن کاملFourier Type Error Analysis of the Direct Discontinuous Galerkin Method and Its Variations for Diffusion Equations
In this paper we present Fourier type error analysis on the recent four discontinuous Galerkin methods for diffusion equations, namely the direct discontinuous Galerkin (DDG) method (Liu and Yan in SIAM J. Numer. Anal. 47(1):475–698, 2009); the DDG method with interface corrections (Liu and Yan in Commun. Comput. Phys. 8(3):541–564, 2010); and the DDG method with symmetric structure (Vidden and...
متن کاملSuperconvergent discontinuous Galerkin methods for second-order elliptic problems
We identify discontinuous Galerkin methods for second-order elliptic problems in several space dimensions having superconvergence properties similar to those of the Raviart-Thomas and the Brezzi-Douglas-Marini mixed methods. These methods use polynomials of degree k ≥ 0 for both the potential as well as the flux. We show that the approximate flux converges in L2 with the optimal order of k + 1,...
متن کاملLocal Discontinuous Galerkin Methods for One-Dimensional Second Order Fully Nonlinear Elliptic and Parabolic Equations
This paper is concerned with developing accurate and efficient nonstandard discontinuous Galerkin methods for fully nonlinear second order elliptic and parabolic partial differential equations (PDEs) in the case of one spatial dimension. The primary goal of the paper to develop a general framework for constructing high order local discontinuous Galerkin (LDG) methods for approximating viscosity...
متن کاملLocal error analysis of the interior penalty discontinuous Galerkin method for second order elliptic problems
A local a priori and a posteriori analysis is developed for the Galerkin method with discontinuous finite elements for solving stationary diffusion problems. The main results are an optimal-order estimate for the point-wise error and a corresponding a posteriori error bound. The proofs are based on weighted -norm error estimates for discrete Green functions as already known for the ‘continuous’...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Scientific Computing
سال: 2016
ISSN: 0885-7474,1573-7691
DOI: 10.1007/s10915-016-0264-z